

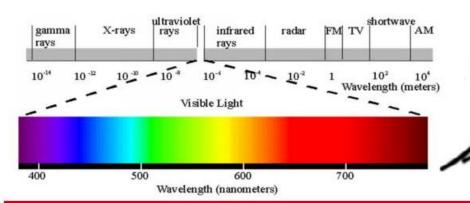
International Commission on Illumination Commission Internationale de l'Eclairage Internationale Beleuchtungskommission

Canadian National Committee Comité national canadien

Holistic Roadway Lighting Design

Uthayan Thurairajah Toronto, Canada | October 19, 2015

10th Biennial Joint Meeting & Technical conference of the CNC/CIE and CIE/USA and celebration of the IYL2015, October 10-20, 2015, Impact Centre, University of Toronto


What is Light?

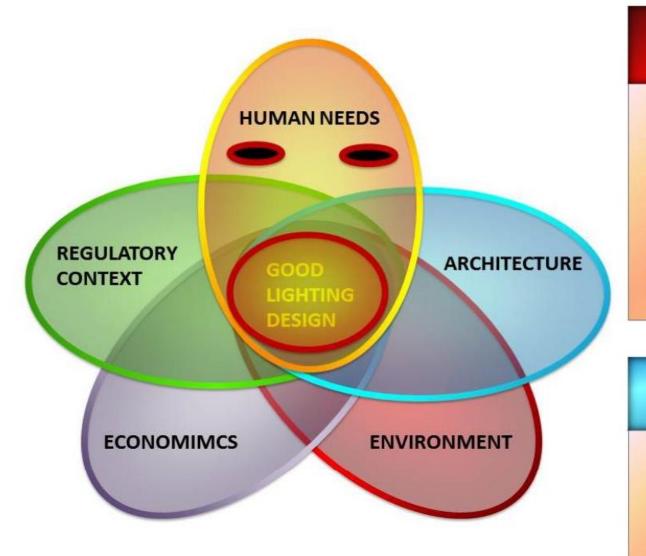
IESNA definition:

"Radiant energy that is capable of exciting the retina and producing a visual sensation"

3 key aspects:

- radiant energy
- excites the retina
- produces a visual sensation

VISION

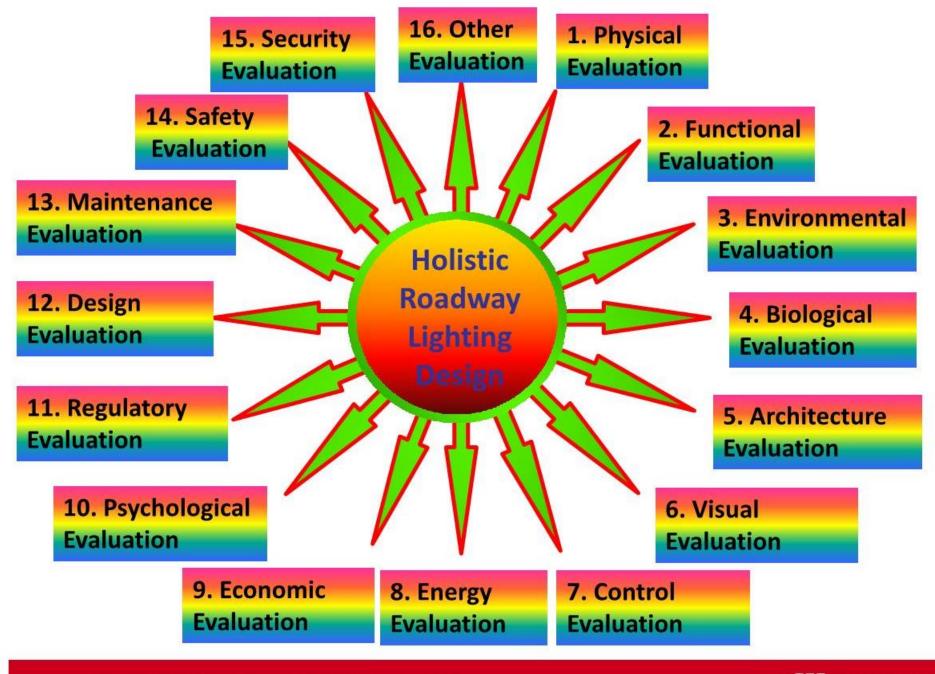

Visibility: Ability extract information from the visual filed.

Visual Acuity: Ability to see fine details

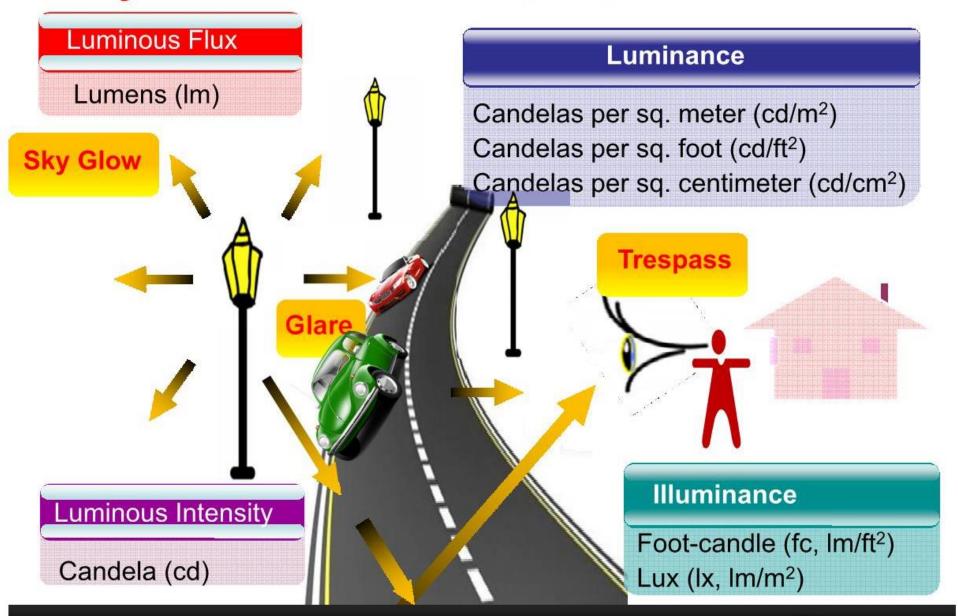
Depends on

Light

Good Lighting Design


Good Lighting Design

"Good lighting design is a compromise, meeting human needs while balancing the architecture, environment, economy and regulatory contex."


Adapted from Dr. Jennifer Veitch, Ph.D.

Quality Lighting

Quality of Lighting is visual performance and visual comfort and ease of seeing

1. Physical Evaluation - Lighting Metrics Review

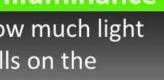
Horizontal Illuminance

how much light falls on the surface of the roadway

1. Physical **Evaluation**

Horizontal

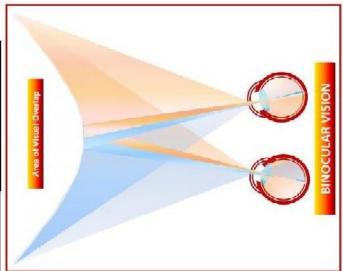
how much light is reflected from the surface of the roadway

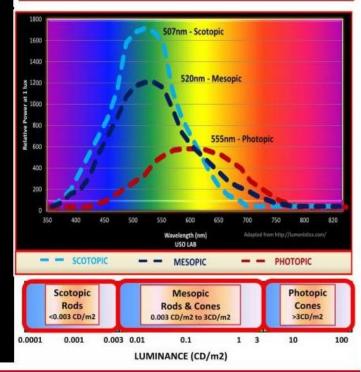


Eye Corneal Illuminance

trespass lighting measurement into the residential property

how much light falls on the vertical surface where pedestrian crossings are expected.


1. Physical Evaluation



Peripheral Vision – Mesopic (Photopic & Scotopic) lumens

We are compromising the safety by reducing the light level using Mesopic factor (Scotopic/Photopic ratio).

2. Functional Evaluation

Classification of Roadway

Freeway, Expressway, Major, Collector, local

Pedestrian Conflict

High, Low, Medium

References

IESNA - RP8 - Horizontal Illuminance & Luminance

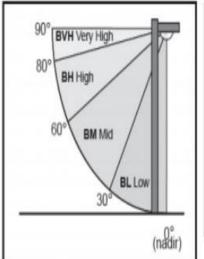
TM-11-00 & IES 10th Edition, The Lighting Handbook

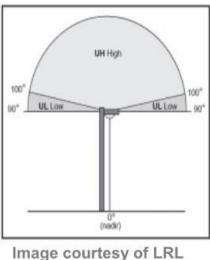
Lighting Zones

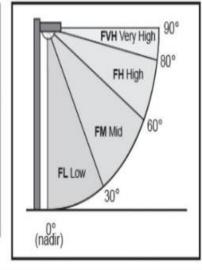
- LZ0 No Ambient Lighting Natural Areas
- ❖ LZ1 Low Ambient Lighting Rural Areas
- LZ2 Moderate Ambient Lighting Suburban Areas
- LZ3 Moderately High Ambient Lighting Urban Residential
- LZ4 High Ambient Lighting Urban areas with mixed residential and commercial use with high pedestrian activity

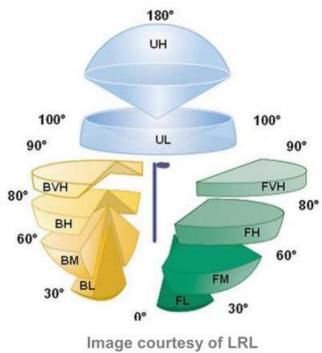
3. Environmental Evaluation

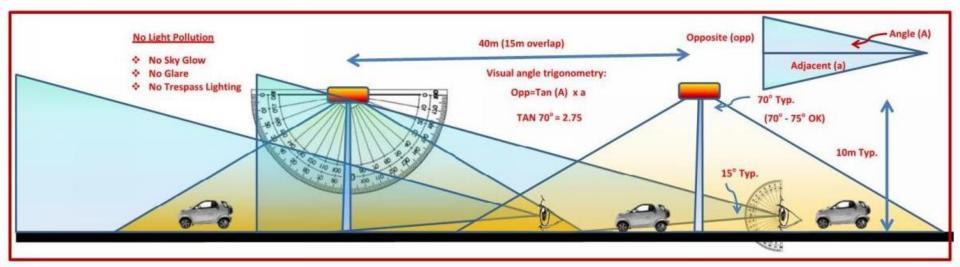
- Light Pollution
- Trespass
- ❖ Sky Glow
- ❖ Glare
- Lighting Zones
- ❖ Lighting Zones LZ0 LZ4
- Pedestrian Conflict
- High, Low, Medium

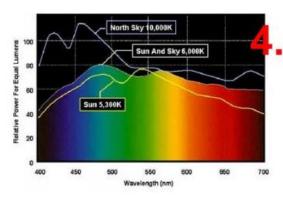

Reference:


IES 10th Edition, The Lighting Handbook

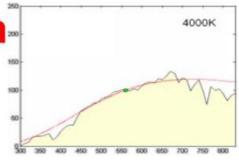

- **OTHERS**
 - IDA Requirement
 - LEED Requirement
 - **❖** ASHRAE Requirement

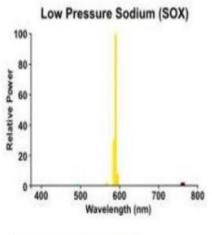

Classification of Roadways

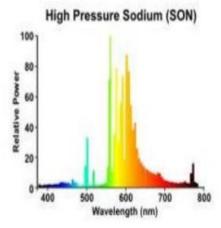

- Trespass / Backlight
- Sky glow / Up light
- ❖ Glare / Offensive Light

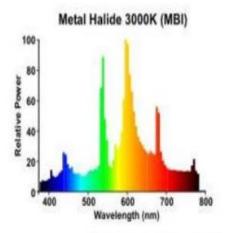


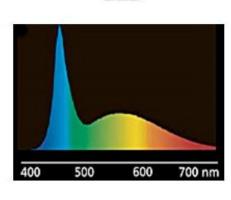
3. Environmental & Functional Evaluation


Reference: IES 10th Edition, The Lighting Handbook

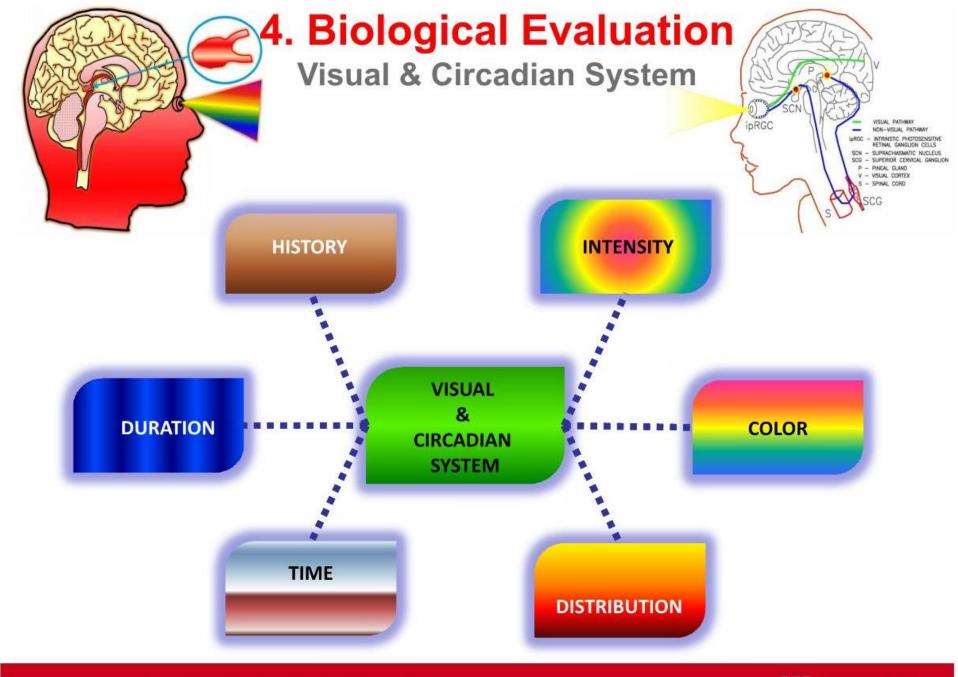

Lighting Zones	Areas – Ambient Lighting Levels	Pre-Curfew Limitation	Post-Curfew Limitation
Lighting Zones LZ0	Natural Areas- No Ambient Lighting	0.1	0
Lighting Zones LZ1	Rural Areas- Low Ambient Lighting	1	0
Lighting Zones LZ2	Suburban Areas- Moderate Ambient Lighting	3	1
Lighting Zones LZ3	Urban Residential Areas- Moderately High Ambient Lighting	8	3
Lighting Zones LZ4	*Urban Residential & Commercial Areas- High Ambient Lighting	15	6


*Urban areas with mixed use high pedestrian activity




Biological Evaluation

LED



4. Biological Evaluation

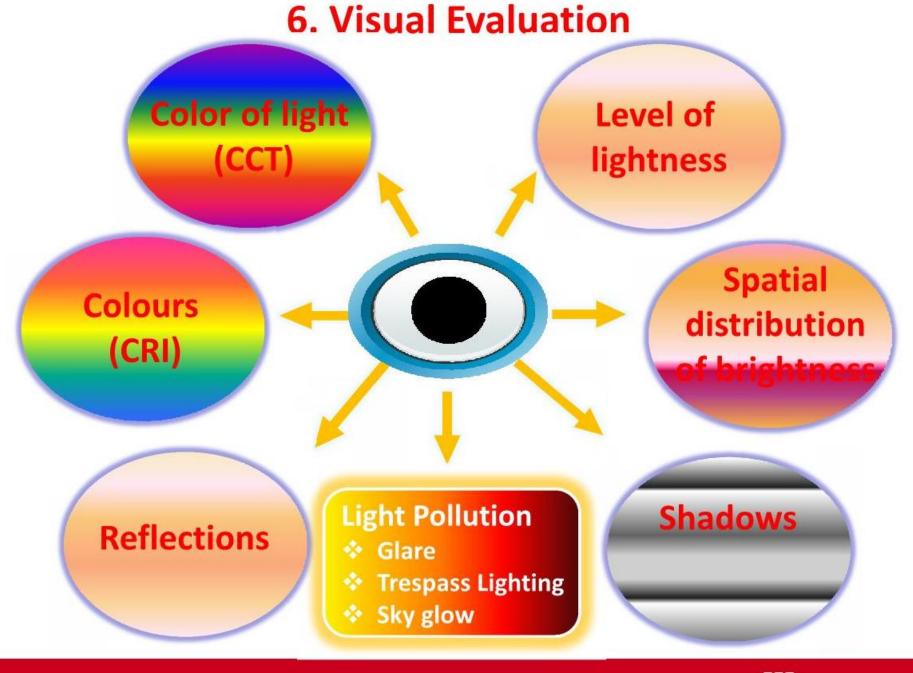
Visual & Circadian System

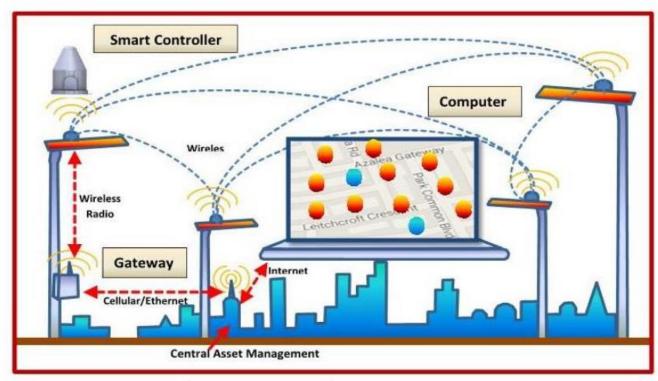
In the future, It is expected that the luminaire manufacturer will provide the amount of light which causes melatonin suppression in humans.

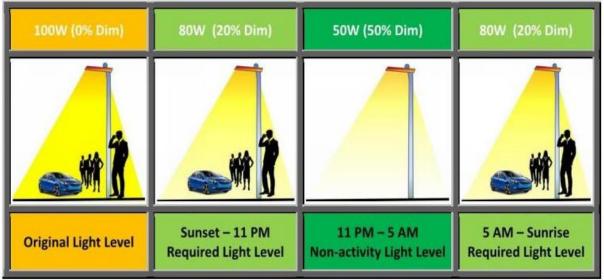
A lighting designer who chooses a luminaire will know the threshold lighting level of each luminaire which suppress the melatonin.

As a lighting designer, we will make sure that the trespass lighting level well below the threshold level during the lighting calculation process.

5. Architectural Evaluation

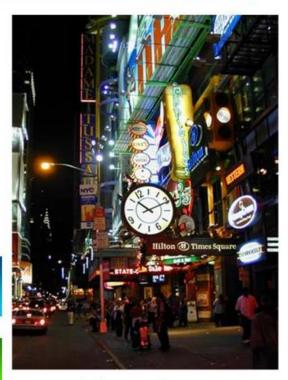





7. Lighting Control Evaluation

Lighting Control System

Sample Dimming Method



ANSI C136.41 Dimming Receptacle

7. Lighting Control Evaluation

- Energy Saving
- Match Light Level to Variable Pedestrian Conflict
- * Reduce Light Level to the required Levels
- Dim or turn off over-Lighted Neighbourhoods (i.e. Times Square)
- Light Pollution Control
 - Reduce trespass
 - Glare
 - Sky glow
- Centralized Monitoring & Control
- Centralized Asset Management

Times Square

8. Energy Efficiency Evaluation

IESNA - RP8 - Horizontal Illuminance & Luminance

ROAD	PEDESTRIAN CONFLICT AREA	MIN. MAINTAINED AVERAGE ILLUMIN. ON PAVEMENT	UNIFORMITY RATIO	MAX. ALLOWED VEILING LUMINANCE RATIO	AVERAGE LUMINANCE	MAX. ALLOWED UNIFORMITY RATIO	MAX. ALLOWED UNIFORMITY RATIO
		R2&R3 in Lux	Eavg/Emin	Lvmax/Lavg	Lavg(cd/m2)	Lavg/Lmin	Lmax/Lmin
FREEWAY CLASS A		9.0	3.0	0.3	0.6	3.5	6.0
FREEWAY CLASS B		6.0	3.0	0.3	0.4	3.5	6.0
EXPRESSWAY	HIGH	14.0	3.0	0.3	1.0	3.0	5.0
EXPRESSWAY	MEDIUM	12.0	3.0	0.3	0.8	3.0	5.0
EXPRESSWAY	LOW	9.0	3.0	0.3	0.6	3.5	6.0
MAJOR	HIGH	17.0	3.0	0.3	1.2	3.0	5,0
MAJOR	MEDIUM	13.0	3.0	0.3	0.9	3.0	5.0
MAJOR	LOW	9.0	3.0	0.3	0.6	3.5	6.0
COLLECTOR	HIGH	12.0	4.0	0.4	0.8	3.0	5.0
COLLECTOR	MEDIUM	9.0	4.0	0.4	0.6	3.5	6.0
COLLECTOR	LOW	6.0	4.0	0.4	0.4	4.0	8.0
LOCAL	HIGH	9.0	6.0	0.4	0.6	6.0	10.0
LOCAL	MEDIUM	7.0	6.0	0.4	0.5	6.0	10.0
LOCAL	LOW	4.0	6.0	0.4	0.3	6.0	10.0

8. Energy Efficiency Evaluation

Ability to change lighting levels to suit human activity levels

Energy Saving Sample Calculations

Match Light Level to Variable Pedestrian Conflict	IES RP-8 Average Light Level		Actual Percentage	Initial Energy Saving by Dimming
High	17	Lux	100%	0%
Medium	13	Lux	76%	24%
Low	9	Lux	53%	47%

Reduce Light Level to the required Levels				
Average Light Level is Required	17	Lux	100%	0%
Average Design Light Level with 70% LLF	20	Lux	118%	18%
Average Initial Ligting on the Field	28.57	Lux	168%	68%

Dim-or turn off over-Lighted Neighbourhoods			
Based on demand and/or requirement	0-17 Lux	100%	0%-100%

9. Economic (& Energy) Evaluation

Lamp Type	Lamp Wattage (watts)	Line Wattage (watts)	Lamp Life (hrs)	Lamp Life (years) (11.5X365) [maintenanc e cycle]	Fixture Cost	Maintenanc e Cost (per year)	Maintenanc e Cost (normalized to the LED fixture life)	Energy Cost (per year)	Energy Cost (normalized to the LED fixture life)	Total Cost of the Fixture (normailized to the LED fixture life)			
100 W MH	100	122	12000	2.9	\$175.00	\$87.45	\$1,458.33	\$51.21	\$854.00	\$2,487.33			
100 W HPS	100	128	24000	5.7	\$150.00	\$43.72	\$729.17	\$53.73	\$896.00	\$1,775.17			
70 W LED	70	70	70000	16.7	\$617.00	\$14.99	\$250.00	\$29.38	\$29.38 \$490.00				
Luminaire	11.5 hrs/night		11.5 hrs/nig							LED Energy	Savings in Cor	nparison to:	
Usage	4197.5	Hrs/year						100 W MH	42.62%				
								100 W HPS	100 W HPS 45.31%				
Mainte nar	nce Cost	\$250.00						Return on In	vestment for	LED Fixture:			
Electricit	y Cost	\$0.10	per kW/hr					100 W MH	100 W MH 3.2 years				
								100 W HPS 4.8 yea					

^{*} The above comparison shows typical lamp data for a 100 Watt MH lamp, a 100 Watt HPS lamp and an 70 Watt LED light source.

^{*} The LED fixture has a higher initial cost, however the savings come from the savings in maintenance and the savings in energy costs.

^{*} The LED fixture starts saving money over the metal halide fixture after 3.2 years.

^{*} The LED fixture starts saving money over the high pressure soduim fixture after 4.8 years.

9. Economic Evaluation

Energy Saving

- ***** Energy Efficient Light Sources reduce electricity expenses.
- Dim or turn off over-Lighted Neighbourhoods.

Operation and Maintenance Savings

- Long life span Light Sources reduce re-lamping costs.
- Operation and maintenance costs.
- * Replacement cost of shorter life light sources.
- Salvaged and/or disposal costs if any.

Benefit Cost Analysis

Current Benefit Cost Analysis based on the Accident Data and the corresponding dollar value. We do not have the dollar value for the environmental benefits.

10. Psychological Evaluation

(Test Site or Mock-up location)

SURVEY – Survey people to find out that the lighting installation meets the human needs while balancing the architecture, environment including cognition, safety and comfort.

	QUESTIONS	1	2	3	4	5	6	7	8	9	10
1.	How would you describe the current lighting?										
	a) Comfortable										
	b) Uncomfortable (Glare)										
	c) Distracting (visually confusing)										
2.	Should the visibility of the light be improved?										
	a) Yes										
	b) No										E 75
3.	Can you be able to see the pedestrian while crossing?										
	a) Yes										
	b) No										
4.	Can you be able to read the signs during the Night?										
	a) Yes										
	b) No				1.00 P						at at

11. Regulatory Evaluation

- ❖ IESNA The Lighting Handbook, 10th Edition
- ❖ IESNA's RPs, DGs, Gs, TMs, LM, etc.

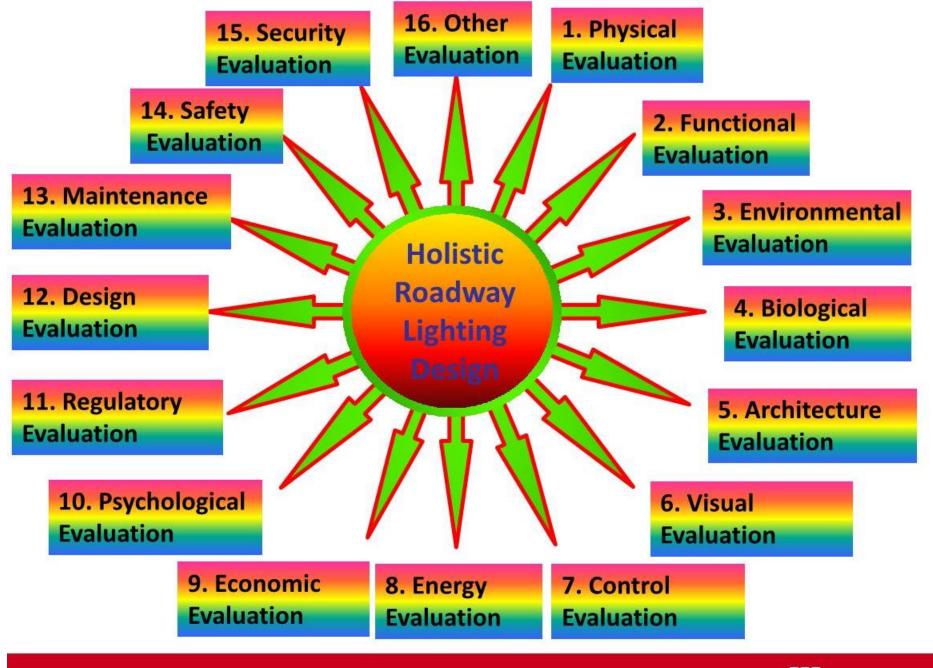
- Leadership in Energy and Environmental Design Requirement.
 - Local Government
 - Others Electrical, Structural & Building Code.

12 &13. Design & Maintenance Evaluation

- Design Evaluation
- Workable Design & Functional Installation

- Operation and Maintenance Evaluation
 - Required space for maintenance
 - ❖ Required skill for maintenance of new technology

14 &15. Safety & Security Evaluation


Security Evaluation

- ❖ Required light levels in the right places (lux/fc)
- Uniform lighting design (Max/Min, Ave./Min.)
- Light Pollution Control (BUG ratio)
- ❖ No Glare No "blinding light."
- **❖** Good luminance & color contrast.
- Good Vertical Illuminance for CCTV if required
- Good Transition lighting, etc.

14 & 15. Safety & Security Evaluation

Safety Evaluation

- Location of pole & type (pole setback)
- Constructability (overhead and under ground hydro lines and other utilities)
- Wind loading (EPA)
- Structural Stability of pole & footing.
- ❖ Electrical safety of the installation (Grounding, etc.)
- ❖ Operation and Maintenance Safety (hydro lines, etc.)

Thank you for your attention!

Have a blessed wonderful day!

Any Question?

Contact Info:

Uthayan Thurairajah

uthayan@ryerson.ca

905-882-1100 ext. 6324

647-988-6171 (cell)